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Abstract 
 
 
This project addressed three distinct topics:  1) Building a fault-tolerant multi-agent systems framework 
inspired by the theory of joint intentions, 2) developing a multi-agent systems framework that directly executes 
a joint intention specification, 3) exploring the use of multimodal interaction in field and mobile environments.  
Topic 1 occupied the first two years of this project, while topics 2 and later 3 have been a more recent 
undertaking.   Since topics 1 and 2 have been written about before, we only summarize them here, providing 
pointers to the relevant papers, and also include an appendix that provides a paper in preparation.  Topic 3 is 
new and has not been written about before, so we present the basic results here.  A paper will be submitted to 
an upcoming user-interfaces conference.  
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1 FAULT-TOLERANT MULTI-AGENT SYSTEMS 

We observed that multi-agent systems are prone to failures typical of any distributed system. Agents and 
resources may become unavailable due to machine crashes, communication breakdowns, process failures, and 
numerous other hardware and software failures. Most of the work done in fault handling in multi-agent systems 
deals with detection and recovery from faults such as state-inconsistencies, relying on the traditional 
techniques for recovering from other distributed systems failure. However, the traditional fault-tolerance 
techniques are designed for specific situations and they require special infrastructural support. We showed that 
fault-tolerance techniques can be readily implemented using generic agents with minimal or no modification to 
the agent infrastructure. We demonstrated that theories from multi-agent systems literature (eg., joint intention 
theory [2]) can be effectively combined with basic fault-tolerance principles to design robust multi-agent 
systems. In particular, we showed that (1) teamwork can be used to create a robust brokered architecture that 
will recover a multi-agent system from broker failures without incurring undue overheads, (2) teamwork can 
also be used to guarantee a specified number of brokers in a large multi-agent system, and (3) agent autonomy 
can be used to prevent thrashing and guarantee acceptable levels of quality of service by an agent. To validate 
our approach, we developed and experimented with the Adaptive Agent Architecture (AAA).  AAA is a 
facilitated and peer-to-peer multi-agent system architecture that offers teams of facilitators for fault-tolerance.  
It is backwards compatible with the Open Agent Architecture (OAA) [1, 6], and is used as an 
interoperation framework both within our QuickSet multimodal system, and also across numerous applications.  
Indeed, AAA was instrumental in tying together the facilitators that supported the first Control of Agent   
Based system (CoABS) Technology Integration Experiment (OAA and the CoABS Grid).  The research on  
AAA contributed to the teamwork theory itself by way of a formal characterization of persistent teams 
and maintenance goals. 

1.1 Adaptive Agent Architecture (AAA) 

The AAA is a multi-brokered multi-agent system architecture that provides an infrastructure for building fault-
tolerant brokered multi-agent systems. As mentioned earlier, it interoperates with the Open Agent Architecture 
and it is currently used in multi-agent systems such as Quickset that place heavy demand on inter-agent 
communication and yet provides acceptable real time response. The AAA agent library has been developed in 
Java and it provides an agent shell for developing AAA agents. The library also provides a facilitator agent that 
serves both as a broker and a matchmaker. The AAA facilitators can be interconnected to form arbitrary 
topologies, thus allowing fast dynamic federation of the AAA agent communities that are not limited to 
hierarchical multi-blackboard architectures. The agent library supports both facilitated and direct inter-agent 
communication. The AAA agents advertise their capabilities as well as an address for connection requests with 
a broker during registration. In case of direct inter-agent communication, the agents use the facilitator as a 
matchmaker to find other capable agents and contact them directly. This is particularly useful when 
communicating large volumes of data with large message size (such as ink data) that is typical in multimodal 
interface agents. TCP/IP is used for network transport and the TCP mechanisms and timeouts are used for 
detection of connection failures. The facilitators as well as other agents can dynamically enter and leave AAA-
based multi-agent systems. The AAA brokers form a team for the purpose of fault-tolerance and they share 
knowledge about who is connected to whom with the team members. 
 
The AAA library uses Horn-clause for knowledge representation, and provides a prolog-oriented term 
hierarchy to automate parsing and to provide full unification of messages. It provides a thoroughly streamlined 
Application Programming Interface (API), reducing the amount of code needed to implement an agent, and the 
API is based around speech acts (e.g. request and inform). Special software engineering features allow 
automatic conversion to and from java objects and their representation in the particular agent communication 
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language being used.  The library includes a persistent BlackBoard data structure that is used to write persistent 
agents. Further, the AAA facilitators use this BlackBoard internally and so they can be made persistent on 
demand.  The AAA-based multi-agent systems interoperate with the Defense Advanced Research Projects 
Agency (DARPA) CoABS Grid wherein AAA Facilitators treat the JINI based grid as an external 
matchmaking resource. Using AAA with the Grid in this fashion eliminates the use of setup files because the 
AAA agents and the facilitators find each other through the Grid.   

1.2 Theoretical Results 

The fault-tolerant behavior of AAA-based multi-agent systems is a consequence of these teamwork 
specifications. We formalized a notion of team commitment that allows for dynamic but persistent teams 
whose members can change with time and also formally defined restorative maintenance goals that enable a 
team to exist beyond one-time joint persistent goals. These two notions of persistent teams enable an AAA-
based multi-agent system (1) to recover from broker failures that arise from problems such as machine crashes, 
communication breakdown, and death of a broker process, and (2) to maintain a specified minimum number of 
functional brokers in the system even when some of the brokers become inaccessible. We briefly discuss the 
two teamwork behaviors next and the formal details can be found in [5]. 

1.2.1 Persistent Teams 
 
Team activity is explained in terms of the theory of joint intentions [2]. This theory characterizes an agent’s 
behavior in a team in terms of its internal state described in modal logic, linear time temporal logic, and 
dynamic logic of action. This earlier work characterized a team in terms of joint commitment between the 
individuals that originally constituted the team. As such, the joint commitment ceases to exist when either of 
the team members ceases to exist. On the other hand, teams in the real world may be one-time teams that are 
disbanded after the team goal has been achieved, or they may be persistent teams that continue to exist even 
when the team members change. For example, the Boston Red Sox are a team even if all the players are traded 
or it is sold to new owners. Persistent teams are especially desirable from a fault-tolerance perspective because 
agents that fail will generally be replaced by other agents during the recovery process. To support fault-
tolerance of AAA facilitator teams, we enhanced the previous teamwork theory such that a team can exist 
independently of the identity of its members. The AAA research introduced a notion of team commitment 
wherein the agents are committed towards “whoever” are members of the team at any time, thus enabling the 
team to continue even when the team membership changes dynamically. The notions of team commitment and 
team intentions were redefined with respect to the team as an entity. This allows a team having these 
commitments to continue as long as there is no mutual belief about the completion, impossibility or irrelevance 
of the team goal even if some of the team members leave and new members join the team. The achievement of 
mutual belief among team members requires group communication that was another of our research efforts 
under the CoABS program and is described in section 2. 
 
The design of the AAA facilitator implements the specification of teamwork that follows from the following 
mission statement: “whenever an agent registers with the facilitator team, the brokers have a team intention of 
connecting with that agent, if it ever disconnects, as long as it remains registered with the team.” In other 
words, the facilitators jointly intend that: 

For each agent A 
   While A is registered, if A is not connected, connect to A 
Using the mission statements, along with other logical properties of the AAA, we logically establish the 
commitments of the brokers in the team and predict who communicates what to whom in order to satisfy the 
above joint intention. Essentially, AAA facilitators end up having a joint commitment to service agents 
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registered with any of the broker teammates with the assumption that brokers can initiate connection with 
stranded agents when a broker teammate dies. These commitments result in fault tolerant behavior when the 
brokers act rationally and take appropriate actions to honor them. These commitments are in addition to any 
brokering commitments that the broker team may have. It is to be noted that the teamwork theory is not 
directly implemented in AAA brokers, the theory (as used in the above mission statement) provides the 
software design specification that is then implemented as part of the facilitator code. 

1.2.2 Maintenance Goals 
 
The earlier characterization of teamwork in terms of joint commitment results in the team being dissolved once 
the jointly committed goal is mutually believed to be either achieved or impossible or irrelevant. However, 
fault-tolerance is a continuous phenomenon and therefore requires that teams be not just one-shot teams. We 
proposed a characterization of team commitment for maintenance goals in order to enable teams that continue 
beyond one-time jointly committed goals.  
 
Maintenance goals can be restorative or preventive. We were concerned with only the restorative maintenance 
goal for the AAA fault-tolerance. We say that an agent has a (restorative) maintenance goal if the following is 
true of the agent: if the agent does not believe that the proposition to be maintained is true, it will adopt the 
goal that the proposition be eventually true. The maintenance goal is persistent if this fact remains true of the 
agent at least until the agent either believes that it is impossible to maintain that proposition or that the 
maintenance goal is irrelevant. Similarly, a team of agents has a team maintenance goal to maintain a 
proposition if whenever the team comes to mutually believe that the proposition is not true, it adopts a joint 
commitment to achieve that proposition. This new jointly committed goal is no longer valid once the required 
proposition is achieved and mutually believed, but the original maintenance commitment remains valid and the 
team continues to exist at least until the team mutually believes the impossibility or the irrelevance of 
maintaining that proposition. 
 
The design of the AAA facilitator also implements the specification of teamwork that follows from the 
following mission statement: “the AAA facilitator team has a team maintenance goal of having at least N 
facilitators in the team at all times where N is specified during the team formation.” In other words, the 
facilitator team has the joint restorative maintenance goal that says: 
 
          The facilitator team is committed to P staying true,  
                       but if it ever becomes false, the team is committed to re-achieving it  
          where P = #brokers >=minimum. 
 
Using logical properties of AAA along with this mission statement, we have shown that it results in 
reconstituting a persistent broker team after broker failure by jointly intending to maintain a minimum number 
of facilitators with the assumption that agents can start new brokers on different machines within security 
constraints, and without additional permissions. Just as with the first mission statement, the above mission 
statement serves as a software design specification for the AAA facilitators. 

1.3 Experimental results 

AAA-based multi-agent systems exhibited the robustness from facilitator failures once the teamwork 
specifications discussed above were implemented in the AAA facilitators. Thereafter, we designed and ran a 
series of experiments to empirically test our hypothesis that it was possible to achieve such fault-tolerance in 
multi-agent systems in a networked as well as standalone environment without appreciable interference with 
the normal operation of the system. The results of the experiment are discussed next for the networked 
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environment. Two agents names as “Distance Agent” and “Client Agent” communicated with each other via 
messages that were relayed back and forth through an interconnection of facilitators acting as a team. The 
agents and facilitators were distributed over a network of four machines and the facilitator processes were 
killed randomly during the experiment. The details of this experiment are discussed in [4]. 

1.3.1 Effect of Recovery on Response Time 
The experiment in Figure 1 was started with six fully connected facilitators and the facilitators were killed one 
by one at random. Three different machines were running two facilitators each and the client and distance 
agents were running on the fourth machine. The stair-step plot shows the number of brokers present at any 
time. The agents mentioned near the peaks are the agents that were connected to the broker that was killed.  

Figure 1: Effect on response time as facilitators fail 

The plot in Figure 1 clearly shows that the AAA recovery scheme enables the system to function, despite 
facilitator failures, as long as there is at least one facilitator left in the system. The peak response times are for 
the requests that were in progress when the broker got killed. The peak value depends on (1) the load on 
different machines, (2) latencies of the devices on different machines and the network latency, (3) operating 
system latencies such as thread scheduling, and (4) the state of the request when the broker failed. As such, no 
inference can be made about the pattern of peak response times except that they happened to be within an order 
of magnitude from random spikes in this experiment. The smaller spikes in response times preceding the peaks 
caused by broker failures is probably a result of disturbing the system (and hence, enhancing the random 
effects) in the process of manually killing the brokers.  
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The establishment of joint persistent goals for teamwork requires communication overheads. However, the 
implementation of teamwork described above comes into play only when there is some transition in the system 
such as facilitators or agents being added or removed. As such, we would expect that there should be no 
teamwork overhead in the steady state. Figure 2 shows two plots, one with the normal recoverable system, and 
the other with the teamwork code disabled. For each number of facilitators, the response time was collected for 
100 requests and the maximum, the minimum and the mean have been plotted.  

Figure 2: Mean response times with and without teamwork 

We used pair wise t-tests to determine whether or not the difference between the mean response time with 
teamwork behavior enabled and the mean response time with teamwork behavior disabled was statistically 
significant. The t-tests were repeated after rejecting the outliers given by a box plot. The p-values were very 
high (about an order of magnitude greater than the significance level 0.05) in both cases, thereby giving no 
indication of any statistically significant difference in the mean response time in the steady state as a result of 
using teamwork. 

1.3.3 Effect of Transitions on Response Time 
Facilitator-team reorganization does affect the response times of the requests in progress at the time of the 
reorganization. The effect of adding additional facilitators to a working system is expected to be similar to that 
when facilitators are killed (assuming that the effects of the CPU getting overloaded due to additional 
processes and the disturbance due to process creation are accounted for). 
 
When an agent enters or leaves the multi-agent system, a message is sent to all the facilitator teammates as 
prescribed teamwork theory when applied to the mission statements of the AAA facilitators. However, this 
message generates too little traffic to appreciably affect the ongoing agent conversations. The experiment in 
Figure 3 consisted of four interconnected facilitators running on two different machines. The client and 
distance agent were running on a third machine. Seven additional agents were started on the fourth (and the 
fastest) machine one by one every two seconds and then killed one by one every two seconds. These additional 
agents registered with one of the facilitators but did not participate in the interaction between the client agent 
and the distance agent. The starting and killing of these agents was automated to avoid disturbing the system 
by manual interaction. The system was allowed to run until completion. 
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Figure 3: Response time when agents leave the system 

For clarity of the figure, we show here a portion of the entire plot (the rest of the plot exhibits the same pattern 
as in this figure). We observe that there is no appreciable and consistent peak in response time whenever an 
agent was started or killed. Moreover, small peaks if any, are within the bounds of random effects (the peaks in 
response time that we see when no agent was started or killed is due to random effects). This result met our 
expectation that agents entering or leaving an AAA-based multi-agent system do not cause the teamwork 
implementation to create a noticeable disturbance in the application. 

1.4 CoABS Grid 

The AAA facilitators were made “grid-aware” and were one of the components on the CoABS grid.  
AAA facilitators treat the Grid as an external matchmaker, and communication with the Grid is through a 
matchmaker interface within the AAA facilitators. Each facilitator registers its capabilities with the Grid, and 
looks for other facilitators on the Grid when it comes up and registers with them, if not already registered, 
forming the aforementioned fault-tolerant facilitator team. Any additional facilitators spawned by AAA agents, 
as part of the fault-tolerant process, also register with the Grid as well as with other facilitators they discover 
on the Grid. 
 
The Quickset-Multimodal Map Interoperator was another AAA agent on the CoABS Grid. Along 
with the AAA facilitators, this Interoperator agent enabled collaboration between agent communities of 
two different research groups (Stanford Research Institute’s multi-modal map and Oregon Graduate Institute’s 
Quickset), and was an integral part of the first CoABS technology integration experiment. Various Quickset 
agents also became accessible from the CoABS Grid as a result of the AAA facilitator being on the Grid, 
and these include the following potentially useful agents: 

–Gesture Recognizer Agent (for Military Symbology) 
–Natural Language Processor Agent 
–Speech Recognizer Agent 
–Handwriting Recognizer Agent 
–Multi-modal Integrator Agent 
–Quickset Collaborative User Interface Agent (for Sharing Ink) 
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–GateKeeper Agent (Persistent Store for Military Symbology) 
 
The CoABS program had a “24/7 CoABS Grid” wherein the Grid software run locally by the CoABS 
researchers across the country interconnected to form a giant Grid, and it was in operation 24 hours a day, 7 
days a week. The services of the above mentioned Quickset agents were made available to other CoABS 
researchers via this 24/7 CoABS Grid. 

1.5 Conclusion 

The AAA is a result of our CoABS research effort on agent architectures that were robust to failures of middle 
agents such as the facilitators and brokers. The AAA library, including the fault-tolerant facilitators has been 
available for download by the DARPA CoABS team and the research community. It is currently being used by 
a number of government and university research labs as well as companies for various agent-based multi-
modal applications. Further research details about the AAA can be found in the following publications. 

1.6 Publications: 

Kumar, Sanjeev; Cohen, Philip R. Towards a Fault-Tolerant Multi-Agent System Architecture. In Proceedings 
of The Fourth International Conference on Autonomous Agents (Agents 2000), Barcelona, Spain, June 3-7, 
2000.  

Kumar, Sanjeev; Cohen, Philip R.; Levesque, Hector J. The Adaptive Agent Architecture: Achieving Fault-
Tolerance Using Persistent Broker Teams. In Proceedings of The Fourth International Conference on Multi-
Agent Systems (ICMAS 2000), Boston MA, USA, July 7-12, 2000.  

2 DEVELOPMENT OF STAPLE 

We have been working on a multi-agent programming language called STAPLE (Social and Team Agents 
Programming Language) with built in support for teamwork and multi-agent conversations. The motivation 
behind STAPLE has been to design an interpreter that can directly execute the logical specification of fault-
tolerance in AAA facilitators (i.e. the mission statements) and get the resulting robust behavior without having 
to implement that specification. The logical specification can then be modified to get different behavior 
without having to implement the modified specification. The notion of teamwork and multi-agent conversation 
is at the core of the underlying theory behind STAPLE, and STAPLE agents reason about their joint intentions 
as well as about the ongoing conversations. Unlike the commonly used communication languages KQML 
(Knowledge Query and Manipulation Language) and FIPA (Foundation for Intelligent Physical Agents), the 
communication in STAPLE is based on a provably correct formal semantics of multi-agent conversations that 
was also developed as part of this DARPA CoABS program. The main contribution of STAPLE to the 
teamwork research is in taking the concept of directly executing team specifications to the next step by offering 
interpretation of agent specifications in a logic that is used for formal specification of the joint intention theory. 
Here we briefly discuss STAPLE as well as our research on multi-agent communication. 
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2.1 Overview of the Language 

STAPLE enables programming multi-agent systems by directly executing the specification of agents in a 
subset of modal logic, dynamic logic of actions, and temporal logic along with abstractions from the joint 
intention theory as well as from a formal semantics of multi-agent conversations based on the joint intention 
theory. As such, STAPLE is a domain independent agent programming language that is formally connected 
with a logical theory of agency, and whose constructs, including the communication primitives, have a well-
founded formal semantics. The benefits of this approach include the ability to modify agent and team behaviors 
just by modifying a single sentence in the logical language, and a potential for verification, for instance, one 
may be able to predict a team behavior offline using the logical specification of agents involved and verify it 
by running the actual system.  
 
The formal language behind STAPLE is a modal language with the usual connectives of a first order language 
with equality, as well as operators for propositional attitudes and event sequences. (BEL x p) and (GOAL x p) 
say that p follows from x’s beliefs or choices respectively. (HAPPENS a) and (DONE a) say that a sequence of 
actions described by the action expression a will happen next or has just happened, respectively. Temporal 
properties are expressed in a linear time temporal logic. ◊p says that the proposition p will eventually be true, 
and □p says that p will always be true. Letters such as τ are used to represent groups. (HAPPENS τ a) and 
(DONE τ a) specify the group τ as actor for the action sequence a without regard to which group members 
participate in the group action. An action expression is built from variables ranging over sequences of events 
using constructs of dynamic logic: a;b is action composition, a|b is non-deterministic choice, a||b is concurrent 
action, p? is a test action, and a* is indefinitely many repetitions. Complex action expressions are composed 
using these dynamic logic constructs. Mutual belief is defined in terms of unilateral mutual belief. Persistent 
goal (PGOAL) formalizes the notion of individual commitment and intention (INTEND) to do an action is 
defined to be a commitment to do the action knowingly. Team commitment (TPG) and team intention (TI) are 
similarly defined for a team of agents. The model theory of this language is based on a possible-worlds 
semantics. Worlds are modeled as a linear sequence of primitive event types and the possible worlds can be 
related to each other via belief and goal accessibility relations. Details of this modal language and its semantics 
can be found in the pointed papers. 
 
Beliefs, goals, commitments, and intentions are represented explicitly in STAPLE. Actions are required to 
have a logical representation that can be used for reasoning, and plans as well as conversation protocols are 
treated as complex action expressions consisting of action sequences, non-deterministic OR, concurrent 
actions, repetitions, and test actions as in the original modal language. The axioms of rational behavior are 
specified as rules, and agent programmers can override the default rules. STAPLE agents can have multiple 
simultaneous commitments and intentions, and a notion of importance is used to order everything from 
commitments and intentions to plans and rules. The syntax of STAPLE is presently an extension of the usual 
Prolog syntax with the exception that certain constructs such as primitive actions and plans can be written in 
both Prolog and Java. Most of the STAPLE interpreter, including a multi-threaded Prolog subsystem, has been 
implemented in Java but a few components such as the belief reasoner and the default rules have been written 
in Prolog. 

2.2 Implementation  

STAPLE interpreter needs logical reasoning capabilities along with the ability to handle procedural tasks such 
as control flow and stack manipulation. Logic programming languages such as Prolog are good for logical 
reasoning but procedural tasks can quickly get quite complex and unwieldy in such languages. It was quite 
clear from our previous experience with STAPLE that completely implementing the STAPLE interpreter in 
Prolog was not a viable option. This is because a large portion of the interpreter dealt with procedural control, 
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and the commercially available multi-threaded Prolog implementations were too buggy and quickly broke 
down when used with STAPLE. Similarly, imperative languages such as Java are good for procedural tasks but 
are ill-suited for logical reasoning. As such, we take a hybrid approach for the current STAPLE development 
by choosing to use both Prolog and Java, and using each language for tasks that they do best. Java is used for 
procedural control and Prolog is used for logical reasoning. We implemented a multi-threaded Prolog library in 
Java, thereby, closely integrating these two disparate languages for use in the development of the STAPLE 
interpreter. 
 
As in any interpreted language, a STAPLE program is first parsed and the appropriate data-structures are 
initialized. The agent’s beliefs, actions, plans, and rules are placed in the appropriate databases, its 
commitments and intentions initialize the stacks that are used to interpret and keep track of the progress of 
commitments and intentions, and any observers (abstraction of sensors), and actuators (abstraction for 
effectors) required by the agent at startup are activated. Thereafter, the main interpreter loop is started and 
execution of the agent proceeds so as to achieve its commitments and intentions. Figure 4 shows the main 
components of the STAPLE interpreter that make this execution of STAPLE agents possible. 
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Figure 4: Main Components of STAPLE Interpreter 

The directed arrows in Figure 4 show the dependency of the components, thereby indicating which 
components invoke or use which other components. The type of the arrows just indicates visual grouping of 
components. For instance, the bold arrows show the components that depend on the belief base, and the dotted 
arrows show the components that the main as well as the various modal interpreters depend on for their 
functioning. The components shown with notched corners (trigger manager and rule manager) have their own 
dedicated Prolog engines, and all other components that need access to a Prolog engine get it from a pool of 
reusable Prolog engines. All prolog engines share the same thread-safe knowledge base that has a very fine-
grained locking granularity to allow highly concurrent access. The belief reasoner and the belief base 
maintenance systems are written entirely in Prolog, the consistency checker and the rule manager are written 
partly in Java and partly in Prolog, and everything else is written entirely in Java. The detailed working of each 
component in Figure 4 can be found in the appendix. 
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2.3 Multi-agent Conversation 

A major part of our CoABS effort was directed towards developing an agent communication language with a 
well-defined formal semantics. Towards this end, we developed formal semantics for group communication, 
and conversation protocols. 

2.3.1 Group Communication 
 
Artificial as well as human agents not only interact with individual agents, but they also need to communicate 
with groups of agents. Moreover, in open multi-agent systems, where agents come and go dynamically, it will 
become ever more prevalent that agents will not know exactly to whom they are sending information or from 
whom they are requesting aid. In fact, a large number of distributed software systems inevitably use some 
incarnation of broadcasting and multicasting. However, there does not exist any formal semantics of 
multicasting and broadcasting in literature. Even the major agent communication languages have either no 
provision or no well-defined semantics for group communication. For instance, in the FIPA ACL (Agent 
Communication Language), the only way to inform a set of agents is to inform them individually, one at a 
time. Furthermore, semantics of the FIPA communicative acts imposes the precondition that the sender has 
certain beliefs about the mental state of the (known) addressee. Consequently, there is no way to send 
messages to unknown agents as in broadcast communication. DARPA’s earlier agent communication 
language, KQML, does offer several primitives, such as broadcast and recruit-all, that have group flavor but 
these primitives are merely shorthand for a request to do a series of other communicative acts. Proper 
semantics cannot be given to group requests such as “One of you, please, get me a slice of that pie.” We may 
safely conclude that support for group communication in the widely used agent communication languages does 
not exist. 
 
Group communication is not just about sending a message to a large number of agents at the same time. As 
mentioned earlier, sometimes the sender does not know the specific recipients of a message. A person who 
posts the notice “Beware of dogs” may not know who will read that message. So the semantics of a 
communication language should allow for intentions with respect to “whoever gets this message,” while 
allowing for constraints on the intended recipients and identification of this constraint for correct illocutionary 
effect. Furthermore, the intended actor for a communication may be a subset of the recipients or a completely 
different set. By sending an email to the CSE101 mailing list requesting Becker to take the attendance in the 
next class, the instructor not only made a request to Becker to take attendance but also let the whole class know 
that she requested Becker to do it. Senders need not only be individuals but can also be groups. An invitation 
card from John and Betty is actually a request to attend from “them”. Individuals may be viewed as singleton 
groups. Therefore, the same communication primitives should work both for individual and group 
communication. We believe that any general-purpose agent communication language should be able to deal 
with these aspects of communication, and we are glad to report that our CoABS effort resulted in a well-
defined formal semantics of group communication that remedies the aforementioned problems. Details of this 
semantics along with a set of desirable properties for any group communication language appear in (Kumar, et. 
al., 2000). 
 
In fact, our work on group communication helped pinpoint certain errors and suggest fixes in the 
implementation of “send message to group” communication primitives in the CoABS Grid. 

2.3.2 Conversation Protocols 
Conversation protocols are traditionally specified as finite state machines in which the transition arcs specify 
the communicative actions to be used by the various agents involved in a conversation. Protocols are executed 
by performing these communicative actions and therefore, the communicative actions have come to be 
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regarded as the central concept around which analyses of protocols are based. However, we believe that it is 
the states and not the state transitions that are key to the correctness and completeness of a protocol. We 
propose a landmark-based approach for formal analysis of conversation protocols wherein the most important 
aspect of a conversation protocol is not the set of communicative actions involved in that protocol but the 
effects or the states that these actions bring about. The basic idea is that since protocols are used to do certain 
tasks or to bring about certain state of affairs in the world, one should identify the important landmarks or state 
of affairs that are brought about by and during the execution of a protocol. Conversation protocols can then be 
expressed at an abstract level as partially ordered landmarks where each landmark is characterized by the 
propositions that are true in the state represented by that landmark. The partially ordered landmarks represent a 
family of protocols. Communicative actions are, then, the tools to realize concrete protocols from a landmark-
based representation. Besides contributing to formal analyses of protocol families, the landmark-based 
representation facilitates dynamically choosing the most appropriate action to use next in a conversation, 
allows compact handling of protocol exceptions, and in some cases, even allows short-circuiting a protocol 
execution by opportunistically skipping some intermediate landmarks. 
 
Despite various research on conversation protocols, there was still a need for a proper formalism for protocols 
that is suitable for automated reasoning. Based on the definition of conversation protocols as a pattern of 
communicative actions, we suggested a formalism to address this concern. In this formalism, concrete 
protocols along with their precondition and goal as action expressions using dynamic logic constructs, thus 
opening the possibility of applying existing formal theories of dialogue and teamwork, such as joint intention 
theory, to protocols represented as joint action expressions. In fact, this is how we plan to use conversation 
protocols within STAPLE. We represent them as action expressions that would get executed automatically 
without having to implement a separate dialogue manager. The details of our CoABS research on conversation 
protocols appear in publications listed below. 

2.4 Conclusion 

We wrote and submitted a journal paper on STAPLE for the “Annals of Mathematics and Artificial 
Intelligence” Journal special issue on “Logic-based agent implementations”. A draft of that paper is attached in 
the appendix. As for the current state of STAPLE, there have been few bug fixes and enhancements beyond 
what is described in the paper. STAPLE agents currently reason about semantics of communication using first 
principles and we expect to demonstrate that it can execute conversation protocols expressed as joint action 
expressions transparently. About 4-6 weeks of programming is needed to get the STAPLE interpreter into a 
stable condition, and to get the teamwork based demos working properly. We expect a first public version of 
STAPLE to be released to the research community by end of the current year. 

2.5 Publications: 

Kumar, Sanjeev, Huber, Marcus J.,  and Cohen, Philip R.  Representing and Executing Protocols as Joint 
Actions. In Proceedings of the First International Joint Conference on Autonomous Agents & Multi-Agent 
Systems (AAMAS 2002), ACM Press, Bologna, Italy, July 15-19, 2002  

Kumar, Sanjeev, Huber, Marcus J.,  and Cohen, Philip R.  Direct Execution of Team Specifications in 
STAPLE (Poster Summary). In Proceedings of the First International Joint Conference on Autonomous Agents 
& Multi-Agent Systems (AAMAS 2002), ACM Press, Bologna, Italy, July 15-19, 2002. 
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Kumar, S.; Huber, M. J.; Cohen, P. R.; and McGee, D. R. Toward a Formalism for Conversation Protocols 
Using Joint Intention Theory. Computational Intelligence Journal (Special Issue on  Agent Communication 
Language), Brahim Chaib-draa and Frank Dignum (Guest Editors), Vol. 18, No. 2, pages 174-228, 2002.  

Huber, Marcus J., Kumar, Sanjeev, Cohen, Philip R.,  and McGee, David R. A Formal Semantics for Proxy 
Communicative Acts. In Proceedings of the Eighth International Workshop on Agent Theories, Architectures, 
and Languages (ATAL-2001), Seattle, Washington, USA, August 1-3, 2001.  

Kumar, Sanjeev, Huber, Marcus J., McGee, David R., Cohen, Philip R., and Hector J. Levesque. Semantics of 
Agent Communication Languages for Group Interaction. In Proceedings of the Seventeenth National 
Conference on Artificial Intelligence (AAAI'00), American Association for Artificial Intelligence Press, Austin, 
Texas, July 30-August 3, 2000, pages 42-47.  

 
 

3 MULTIMODAL INTERACTION IN FIELD AND MOBILE ENVIRONMENTS 

3.1 Summary 

 
Multimodal interaction allows users to engage computer systems using the best combination of modalities for 
the situation and task.  Research has documented that because multimodal interaction merges information from 
multiple sources, it can overcome errors in the individual input modalities, thereby leading to more robust 
performance. This process, known as mutual disambiguation (MD) [7], has been shown to lead to relative error 
rate reductions in speech recognition of 19-45% in challenging environments, such as with accented speakers, 
moderate noise, and moderate motion [3, 8].   The purpose of this project was to test the hypothesis that 
multimodal interaction would lead to improved performance over the individual modalities in a challenging 
environment in which subjects were highly exerted, breathing heavily, and physically tired.  
 
We conducted a study in which users engaged in strenuous activity while having to perform map-based 
computer tasks using portable computing equipment.  Specifically, while engaged in an “anti-kidnapping” 
scenario, users ran across an uneven field, carrying a PDA and a baby carrier, while competing against time. At 
each “station”, the user performed a series of multimodal tasks using the PDA, and then ran to another 
location. This activity made the users breathe heavily (thus interfering with the speech recognition), and 
become tired and fatigued (interfering with both the speech and gesture recognition) during the course of the 
study. The environmental noise included loud ambient noise, such as that generated from a central-cooling 
system, as well as various kinds of unpredictable ones, such as noise from vehicles or a helicopter, lawn 
mowers being used in the vicinity, passers-by chatting loudly or talking on cell-phones, and noise from people 
suddenly arriving to play a game.   
 
The study had three phases viz. stationary, running, and running with a baby carrier. The overall multimodal 
success rate was about 78%, the speech recognition rate was 75.4%, and the gesture recognition rate was 
92.8%. The mutual disambiguation (MD) rate was 12.8%, meaning in 12.8% of the successful commands, 
either speech or gesture’s top candidate hypothesis was incorrect.  The MD rate increased with exertion, and 
the MD rate in the most exerted condition was twice that in the control condition (8.3% in the control, and 
14.8% and 16.5% respectively in the two running phases), thus providing evidence of robustness of 
multimodal interaction in exerted field and mobile environments. The overall performance of the system 
remained stable, despite the increased exertion. As expected, performance of the gesture recognizer degraded 
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from the control to the exerted conditions (from 97.6% to 92.1% to 88.9%). However, the most surprising 
result was that the performance of the speech recognizer was not significantly different in the three conditions 
(73.5% in the control phase, 75.2% in the running phase, and 76.9% in running with the baby phase).  
 
Overall, our hypothesis that mutual disambiguation would stabilize system performance in the face of exertion 
was supported.   Gesture/sketch recognition was more severely impacted by exertion than was speech, but the 
multimodal architecture compensated for these errors.  However, we are still quite curious about the speech 
recognition results, which are counterintuitive.  One observation that might explain them was that users tended 
to speak louder when they were exerted. An alternative explanation could be that the speech recognizer 
running on the PDA performed poorly in those cases in which it did not get the correct recognition —a 
hypothesis suggested by the fact that the correct utterance was not in the speech n-best list in a large percentage 
(62%) of the cases that the speech recognizer failed to recognize correctly. This phenomenon needs to be 
further investigated using the corpus collected during the study.  We expect that running the recorded speech 
through a better recognizer might show the speech recognizer performance to be better for the control, but 
decrease with increased in exertion, but the system would still have stable performance because of mutual 
disambiguation.  

3.2 The Study 

The study involved collecting data on speech, gesture, and multimodal recognition rates under exerted 
conditions along with a measure of physical exertion to correlate with the performance of the various 
recognizers. The subjects interacted with the Quickset multimodal system running on HP iPaq PDAs in a real 
field setting.  We developed an anti-kidnapping scenario that required subjects to run as fast as they could 
between each interaction with the system. The participants were outfitted with two close-talking microphones, 
a cap to secure the microphones, a voice recorder, a heart-rate transmitter on their chest and a watch on their 
arm to record the heart-rate data, and a small fanny-pack to hold the voice recorder. The speech recognition 
was done on the PDA itself but the gesture and multimodal recognition was done on a server machine 
connected to the PDA over a wireless network. 
 

3.2.1 Storyline 
 
The subjects were told that their task was to rescue kidnapped baby Jessie. The police psychological profilers 
believe that a psychopath kidnapped her because various objects arranged in strange shapes were left at the 
scene. Jessie’s older sister Mary saw the kidnapping happen at a distance and decided to follow the kidnapper. 
At each object left by the kidnapper, she left an object with a pointing aspect to it to point to the next place she 
saw the kidnapper put the object, and hence the subject could follow the arrows to where the baby might be 
found.  
 
The first priority of the subjects is to retrieve the kidnapped baby. Another high priority is to find and arrest the 
kidnapper, and for this reason, the subjects need to send information about clues from the field to the police 
headquarters for further analysis. The subjects would need to follow the clues (shapes and arrows) in order, and 
enter the information into the PDA. This data gets beamed back to the headquarters so that the detectives and 
criminal psychologists can puzzle out the kidnapper and get his motive and possibly his location. At the end of 
the trail of clues, the subject would find baby Jessie abandoned by the psychopath. The subjects need to pick 
up Jessie and follow the clues back to the starting point, at each point again entering the information in the 
PDA so as to double check them at the headquarters. 
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3.2.2 Equipment and Infrastructure 
 
The equipment used in the study consisted of two Compaq iPaq PDAs, one with a 206 MHz Intel StrongArm 
processor running Pocket PC 2000, and the other with a 400 MHz Intel XScale processor running PocketPC 
2002. Each PDA communicated with server programs over a wireless 802.11b network.  To provide the 
network, we installed a mobile antenna for one end of the course, and a roof-top wireless antenna at the other 
end.  One iPAQ had a built-in wireless card while the other iPaq used an Orinoco PCMCIA wireless card 
connected to a 2db external antenna. This 2db antenna was mounted in a backpack that was carried by the 
subjects in the first part of the study (1-PDA setup) when the subjects ran with the PDA, and was carried by the 
research assistant during the second part of the study (2-PDA setup).  
 
For interacting with the machines, we employed two close-talking microphones, and a digital voice recorder. 
One of the iPaqs had a built-in external microphone jack, and the other iPaq had to be modified to use its 
headphone jack as an external microphone jack.  One of the close talking microphones was attached to the 
PDA and was used for speech recognition by the Quickset multimodal system. The other microphone was 
attached to the voice recorder to provide data for scoring the speech recognizer, for calculating the respiration 
rate as a measure of exertion, and for using that data offline to evaluate other speech recognizers for use in 
field and mobile settings. During the 2-PDA setup, the subject would run to a station, take the PDA from the 
research assistant, plug in one of the microphones, enter data, unplug the microphone and return the PDA to 
the research assistant before running to the next station.  
 
In order to gather heart-rate data, a Polar heart-rate transmitter, and a Polar heart-rate recording watch were 
used. In order to provide a consistent signal, the heart-rate transmitter was smeared with ECG conducting gel 
before it was put on the subjects. The time on the heart rate monitor was synchronized with the server machine 
used for the study before each subject began. It was set to record heart rates in beats per minute every 5 
seconds. This heart rate data was then uploaded to a database using an infrared connection to the analysis 
machine, and is the primary measure of exertion in this study.  
 
Each PDA was running the Quickset user interface integrated with ScanSoft’s ASR3200 speech recognition 
engine, as well as their TTS3000 text-to-speech engine. The speech recognition was done locally on the PDA 
while the ink was shipped over the wireless network to the backend servers for gesture recognition, and for 
multimodal integration with the output of the speech recognizer. The resulting multimodal command was sent 
back to the PDA over the same wireless network for display on a map of the campus by the Quickset user 
interface.  
 
One of the major issues that we became aware of during the pilot stages of the study was that the standard 
802.11b wireless network is unable to keep up while the user was running with the PDA.  In this configuration,  
our Quickset software became disconnected from the network frequently.   It typically took about 15-20 
seconds to connect back to server machines after a disconnection. Because this time lag was clearly not 
acceptable for the study, we explored several options, such as using different wireless cards, using the external 
2db antenna in a backpack.  By removing all possible sources of wireless interference, including Bluetooth 
transmission, using a specialized wireless network id for the study, and fixing the IP address of the PDA 
instead of using DHCP, we were finally able to get the system to work reasonably well.  Unfortunately,  we 
were still unable to completely prevent the disconnections from occurring. This led to the 2-PDA setup using 
one stationary PDA at each end of the course. The output of the speech, gesture, and multimodal recognizers 
were recorded at the backend for data analysis. 
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The baby carried by the subjects during the second running phase was a 48cm Zapf Creations ChouChou 
brand, and the carrier was an Evenflo PortAbout with removable base.  The carrier, and the baby together 
weighed roughly 7 lbs.  

Figure 5: Subject in experimental gear     

 
The picture in Figure 5 shows a test subject geared up during pilot testing of the experimental setup. One can 
see the two microphones, the baby in the carrier, the PDA, and wireless antenna in the backpack. Figure 6 
shows the pilot subject interacting with the PDA at one of the stations.  

Figure 6: Subject at a station 
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3.2.3 Subjects & Multimodal Task 
 
A total of 25 paid volunteers participated in the study. All subjects were male native speakers of American 
English, between 20 and 49 years of age, with varying levels of cardiovascular fitness. Previous studies have 
shown that the performance of speech recognizers is degraded for non-native speakers of English resulting in 
higher mutual disambiguation for such speakers. Consequently, only native speakers of American English were 
used in the present study so as to minimize sources of errors in speech recognition other than those caused by 
exertion and environmental conditions.  The reason for using only male subjects was the observation during 
pilot testing that this particular speech recognizer on the PDA performed sufficiently poorly for female 
speakers even under normal conditions that it was not usable.  

Figure 7: Heart of marbles and knife  

The task involved entering two kinds of entities into the PDA using speech and gesture. One of the entities was 
a “shape” formed by arranging smaller objects such as marbles or pencils. The other entity was an object with 
an inherent pointing aspect that we refer to as the “arrow”. For example, Figure 7 shows a heart shape made 
out of marbles, and a knife pointing towards another location.  Similarly, Figure 8 shows another entity pair (a 
triangle of cigarettes, and a screwdriver pointing in a certain direction). 

Figure 8: Triangle of cigarettes and screwdriver 
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For each “shape” the subjects were asked to draw the shape, such as a heart or a triangle, on the PDA using the 
stylus and say what object the shape was made of (such as “marbles” or “cigarettes”). For the “arrow” object, 
they were asked to draw an arrow on the PDA while saying, “[name of object] pointing this/that way”.  For 
example, for Figure 7, the subject would draw an arrow and speak “knife pointing this way”, and for Figure 8, 
the subjects would draw an arrow and say “screwdriver that way”.  Subjects were told to attempt no more than 
three times to enter the data at each station before moving on to the next. 

3.2.4 Design of the experiment 
 
A within-subject design was used for the study.  The three conditions compared were the control (or stationary) 
condition, the running condition, and the running with a load condition, in that order. On an average, the 
subjects spent approximately 45–60 minutes during the actual study (not counting the time for instructions and 
practice).   We did not counterbalance the order of trials because of the unpredictability in the time that would 
have been needed for subjects’ heart rate, respiration, and limb fatigue to return to the control level after 
exertion. 
 
The subjects were first given instructions inside the lab and allowed to become familiar with the system 
through practice until they felt comfortable using it.  The subjects’ heart rate was recorded during this practice 
session in order to obtain a resting level. Thereafter, the subjects were equipped with the rest of the 
experimental gear and taken outdoors for the actual study.  As described earlier, the storyline for the study 
involved a kidnapped-child rescue situation in order to simulate the conditions under which rescue workers and 
military personnel may be operating. This scenario involved saving a kidnapped infant which had to be done as 
fast as possible, thus adding an element of time pressure. In addition, the subjects were told that the participant 
who completed the study in shortest time would be given an additional $100. The reason behind this reward 
was to stimulate a race against time that would get subjects to exert themselves as much as they could, thus 
allowing us to see the effect of exertion on the performance of speech, gesture, and multimodal recognition. 
The study was carried out over the period of more than a month under weather conditions that varied from 
rainy and windy to bright and sunny. It was assumed that the effect of unpredictable random outdoor noise 
would average out over the period of the study both within and among subjects.   Therefore, exertion would be 
the dominant factor influencing all types of recognition. For safety reasons, the heart rate monitor was set up to 
beep at a maximum heart-level calculated per subject depending on his age, and the experiment would have 
been discontinued if a subject got over-exerted (as indicated by beeping of the heart rate monitor).  

3.3 Procedure 

The subjects first completed ten pairs of multimodal commands while standing in the field where the study was 
set up. The subjects were shown a set of ten photographs of hypothetical pairings of “shapes” and “arrows” 
that they had to enter into the PDA. Most of these combinations of shapes and arrows were not used in the 
running conditions. This part of the experiment served as the control phase as the subjects were not yet exerted 
but had enough practice using the PDA, and we can assume that the external ambient noise conditions (other 
than the occasional, unpredictable sounds) remained the same during this control phase and the subsequent 
running phases.  
 
There were ten stations, each of which was set up with a “shape made of objects” and an “arrow.  The stations 
were numbered from one to ten and the “arrow” at each location, except for location ten, pointed to the next 
location. The arrow at location ten pointed to the location of the baby.    The stations were arranged diagonally 
along the arcs of a circle in the Oregon Graduate Institute (OGI) campus. Each station was marked with a 
numbered flag that the participants could see when they got close enough. This allowed the subjects to run 
directly towards the next station without wasting time or having too much opportunity to lower their heart rate 
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and respiration rate. The overall distance run by the participants was 1.6 km, with an average of 90 m between 
each station. 
 
After the control phase, the subjects proceeded to the first station to begin the first running condition.  At each 
station, the subjects would enter into the PDA the “shape” and the “arrow” that they found at that station, and 
then run in the direction of the arrow at that station to reach the next station. This was the first running phase of 
the experiment. After completing ten pairs of commands in this condition (one pair at each station), the 
subjects would retrieve the baby in the baby carrier and returned to location ten. Subjects were offered cold 
water or sports drink at this point to prevent them from getting dehydrated. Thereafter, the subjects began 
running their way back through all the ten stations in reverse order from station ten to station one, and re-
entering information at each station. However, this time they were required to carry the baby in a baby carrier 
in their writing hand. This was the second running phase of the experiment and was designed to test the effect 
of arm fatigue on gesture recognition when interacting with the PDA using stylus. After finishing the course, 
participants returned to the lab for a short interview.  
 
The study had two parts. The first 8 subjects carried the PDA along with them when they ran, and the 
remaining 17 subjects had a 2-PDA setup where the PDAs were stationary (held by research assistants) at each 
end of the course. During the second (2-PDA) part of the study, there was a research assistant at each station 
holding the PDA for the subject, and hence the subjects knew exactly where to run. The ground was uneven 
and at times slippery and subjects had to be careful while running thus adding to their cognitive load. 

3.4 Measures 

Three kinds of data were captured per subject: speech was captured by a digital voice recorder, heart rate data 
gathered by a heart rate recorder, and a log file that recorded the outputs of speech, gesture, and multimodal 
recognitions along with their timestamps. The voice recording was converted into a “wave” file, transcribed for 
spoken utterances as well as for exhalations (to calculate respiration rates) using a signal analysis tool called 
PRAAT. The transcribed speech and the heart rate data along with their timestamps were uploaded into an 
Access database using Python scripts. Similarly, the log files were parsed and analyzed using Python scripts. 
The relevant information for scoring the performance of speech, gesture, and multimodal recognition was 
uploaded into the same Access database along with their timestamps and linked to the transcribed speech and 
heart rate data. A set of GUI tools were developed using Python and Java to help a researcher score the 
database.  
 
One of the annotations used in the scoring was to mark whether or not the output of a recognizer was 
functionally correct. There are several instances when a “close-enough” item on the speech or the gesture n-
best list results in the correct multimodal command being on the top of the MM n-best list. In this sense, the 
incorrect but “close-enough” item can be regarded as being functionally correct even though it is lexically 
incorrect with respect to the subject’s actual speech (or gesture). Just as with lexically correct items, there may 
be mutual disambiguation if the functionally correct item is pulled up from its position in its n-best list by 
another modality. Our primary interest for the current study is about lexical correctness, though both functional 
and lexical correctness were analyzed.  
 
MD occurs when the top-ranked multimodal command includes an interpretation from speech and/or from 
gesture that is not itself top-ranked for that modality.    The MD rate is thus calculated as the percentage of 
correct multimodal commands that had mutual disambiguation between the input modalities. This definition of 
MD rate is different from that in the literature (Oviatt, 1999) because we are only interested in the contribution 
of MD towards correct multimodal recognition. For the purpose of calculating MD, all items on the speech n-
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best list whose difference in probability was less than 0.0001 were counted as having the same probability, and 
hence having the same rank. 
 
As mentioned earlier, data was collected for 25 subjects out of which the first 8 subjects used the 1-PDA setup 
(they carried the PDA with them as they ran) and the other 17 subjects used the 2-PDA setup (two stationary 
PDA’s were held by research assistants at the two end of the course). Because the system performance from 
the 1-PDA condition was frequently influenced by wireless network problems and/or slow response times, it 
was decided to score and analyze the data for the 2-PDA setup only at this time. Out of the 17 subjects with 2-
PDA setup, 1 subject could not complete the course, and the data for two of the subjects was badly out of 
synch and hence could not be scored. Out of the remaining 14 subjects, one subject made too many user errors 
(such as drawing line instead of drawing an arrow).   We therefore analyzed data from 13 subjects. Also, 
although the analyses were done twice, once counting only the first multimodal attempts, and then counting all 
multimodal commands. We present only the results for the first attempts.  

3.5 Results 

The results that follow are from the first attempts analysis of 13 subjects (from the 2-PDA setup) counting only 
the lexically correct recognitions as correct recognition results. The annotation “L” in the various figures 
indicates lexical correctness. 

3.5.1 Summary 
 
The variation of multimodal success rate (MMS), speech recognition rate (SR), and gesture recognition rate 
(GR) across the three study conditions is given in Figure 9.  
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Figure 9: Performance of multimodal, speech, gesture recognition 
 
This figure shows that the performance of the gesture recognizer decreases from the control to the two running 
cases, though the decrease from the first running condition to the second running condition (running*) is not 
statistically significant. Contrary to expectations, this figure does not show the performance of the speech 
recognizer to be affected by running. The multimodal success rate increases very little from the control to the 
running cases, and this increase, however small, may be attributed to the better speech recognition. Figure 10 
shows variation of mutual disambiguation rate (MD) across the three conditions - control, running, and running 
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with baby (running*). This figure illustrates that the MD rate in the two running conditions is nearly twice that 
of the MD rate in the stationary (control) condition.  
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Figure 10: MD rate across conditions 

The fact that the contribution of MD increases from the control to the running conditions even when the 
performance of the gesture recognizer is degraded shows that (1) the speech is pulling up the gesture most of 
the time, and (2) without mutual disambiguation, the performance of the system would have been degraded 
significantly in the running conditions as compared with the stationary condition. 

3.5.2 Tests for statistical significance 
Next, we statistically analyze these measures across the three conditions in order to determine which of the 
observed results are statistically significant. The fact that each subject went through all the three conditions 
allows us to compare each measure (MD, SR, or GR) for every subject between two conditions at a time 
(between control and running, between control and running*, and between running and running*) using a pair-
wise t-test. All t-tests were one-tailed, α was 0.05 and the null hypothesis was that the difference of means is 
zero.  
 
Figures 11, 12, and 13 summarize the p-values for the difference in means between various pairs of conditions 
for 13 subjects for the lexically correct case using 1-tailed pair wise t-test for MD, gesture recognition and 
speech recognition rates respectively. 
 

 Running Running with baby 
Control 0.038827 0.013211 
Running  0.301373 

Figure 11:  P values for pair-wise t-tests on MD rate (13 subjects, lexically correct) 

 
The low p-value for the control vs. running, and control vs. running with baby conditions in Figure 11 confirms 
our hypothesis that there is statistically significant increase in the MD rate between the control and the two 
running conditions. However, the high p-value for the two running conditions show that one cannot confirm 
whether or not there is any statistically significant difference in the mean MD rates for those two conditions.  
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 Running Running with baby 
Control 0.013068 0.002410 

Running  0.106856 

Figure 12:  P values for pair-wise t-tests on gesture recognition (13 subjects, lexically correct) 

 
The low p-value for the control vs. running, and control vs. running with baby conditions in the Figure 12 
confirms our hypothesis that there is statistically significant decrease in the performance of gesture recognizer 
between the control and the two running conditions. However, the high p-value for the two running conditions 
show that one cannot confirm whether or not there is any statistically significant difference in the mean gesture 
recognition rates for those two conditions.  
 

 Running Running with baby 
Control 0.379138 0.298350 
Running  0.315661 

Figure 13:  P values for pair-wise t-tests on speech recognition (13 subjects, lexically correct) 

 
The high p-values in all cases in Figure 13 says that we cannot demonstrate a difference in performance of 
speech recognition from the control to the two running conditions, or between the two running condition.  
 

3.5.3 Correlation with heart rate 
 
One of the goals of the current study was to find how the speech, gesture, and multimodal recognitions perform 
under exerted conditions. We use heart rate as the primary measure of exertion, other measures being 
respiration rate, and running speed. As mentioned earlier, each subject’s heart rate was recorded every 5 
seconds during practice session (to get resting heart rate) and also during the actual study outdoors. The 
absolute heart rate of each subject varied widely, and the absolute heart rate data from different subjects could 
not be combined. Therefore, each absolute heart rate data was converted into relative heart rate as a percentage 
of that user’s resting heart rate. The success and failure of each speech, gesture, and multimodal command was 
then correlated with both the absolute and relative heart rates for all subjects. The overall correlation for all 
subjects combined was computed by combining the success and failure data as well as the relative heart rates 
for all subjects. Figure 14 presents the correlation of various success rates with relative heart rate for all 13 
subjects combined. Surprisingly, there is negative correlation only between gesture recognition and the relative 
heart rate. 
 

 Correlation with Relative Heart Rate 
Multimodal Success Rate  0.057801 
Speech Recognition Rate 0.086210 
Gesture Recognition Rate  -0.169875 

Figure 14: Correlation with relative heart (13 subjects, lexically correct) 

3.6 Conclusions 

The study demonstrated that multimodal interaction with map-based PDAs that offer mutual disambiguation of 
modalities can support stable performance when subjects are highly exerted.  The QuickSet multimodal system 
showed a doubling of its mutual disambiguation rate (8% to 16%) from stationary to exerted conditions, while 
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the overall multimodal success rate stayed constant.  Exertion was found to affect gesture/sketch recognition 
more than it did speech recognition, with the gesture recognition rate being significantly lower during the 
exerted condition than in the control, while speech remained stable.  However, follow-up research needs to 
investigate whether a better speech recognition system might have given still better results in the control 
condition, which might then result in a decrease when exerted.   

3.6.1 Equipment observations 
The study was originally designed and pilot tested using a single PDA that was wirelessly connected to the 
campus computer network using 802.11b.  However, we found that various 802.11b receivers (especially the 
one on the HP iPAQ) in the PDAs could not properly maintain network connections while the subject was 
running, and that switching of network base stations as the subject ran would often cause a substantial time 
delay in reacquiring the network, often leading to poor multimodal performance.  This problem led us to 
abandon the original method of having subjects carry the PDA from station to station, and instead run from one 
station to another where they picked up a PDA that was already on the network.  
 
The Quickset system was also enhanced with an ability to communicate with an Emtac Bluetooth GPS 
receiver, thus enabling the system to display the position, orientation and speed of a subject on the PDA in real 
time. The objective was to provide the subjects with a sense of their location and orientation with respect to the 
study area, and the running speed was to be used as a third measure of exertion. However, it was found during 
the pilot studies that there were too many problems with the wireless network during the running conditions.  
Moreover, the Bluetooth GPS unit and the transmission of GPS data from the PDA were slowing down the 
system’s response. Because that response time needed to be kept within 3-4 seconds in order not to allow 
enough time for the heart rate of the subjects to come down between commands, it was decided not to use the 
GPS for the study.   Instead we used a rough estimate of speed calculated from the known distance between 
each station, and the time recorded by the system between the subject’s last command at the last station, and 
the first command at the current station. Finally, during pilot testing, the equipment setup employed a 
Plantronics’ Bluetooth wireless microphone to communicate with the PDA. However, the design of the 
microphone (which wrapped around the ear) was too unstable to keep positioned correctly when worn by a 
running subject.  In addition, the battery life was too short to last for an entire session.  It was therefore decided 
to go with wired microphones instead for the actual study. 
 

3.6.2 Future data analysis 
The data collected by the current study offers several opportunities for further analysis and research. 

(1) The respiration needs to be scored for each subject and correlated with the speech, gesture, and 
multimodal success rates. 

(2) The running speed of subjects between each station needs to be estimated and correlated with the 
various success rates.  This will provide a better measure of exertion, for example, some subjects were 
so tired by the third segment that they merely walked rather than ran.   Their heart rate and respiration 
would not then necessarily be an indicator of their exertion level.  

(3) In order to further investigate the counterintuitive finding that speech recognition was unaffected by 
exertion, the recorded voice should be run through another recognizer, or through the same recognizer 
with different thresholds, and the analyses redone. When the current recognizer failed, most of the time 
(62%) the correct item was not among its hypotheses (i.e., in its n-best list).  By comparing with a 
different recognizer, or with different n-best thresholds, we would hope that the correct item would be 
somewhere in the n-best list, which is required if mutual disambiguation is to be of any help.  
However, a longer n-best list comes at a cost of considerable computational resource and thus, there is 
always a compromise between the system response time and its accuracy.  
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